Evaluation of a Coupled WRF-CLM Model over the Western United States

Ripley McCoy¹, Jiming Jin¹, Simon Wang² ¹ Utah State University ² Utah Climate Center

Model Setup

- WRF model version 3.0 coupled with the Community Land Model (CLM) version 3.5 (coupling work by Jiming Jin and Zack Subin).
- Sensitivity testing of microphysics and cumulus schemes for two week periods in January and August 2008 based on persistent precipitation in higher elevations.

•110 X 110 •32 km spacing

Domain

Model Setup

OPTION	SCHEME USED
Microphysics	WSM 5-class
Longwave Radiation	CAM
Shortwave Radiation	CAM
PBL	YSU
Cumulus	Kain-Fritsch
Surface	CLM 3.5
Sfclay	Monin-Obukov
W_damping	On

Latitudinal Cross Section - Precipitation

Latitudinal Cross Section - Precipitation

Daily Average Precipitation

Impact of Large Scale Forcing Data

- Run a sensitivity test changing only forcing data (NCEP v. CCSM)
- Run with WSM 5-class microphysics scheme, Kain-Fritsch cumulus scheme
- Run for January 13 27, 1999

Latitudinal Cross Section - Precipitation

WRF w/CCSM minus WRF w/NCEP

Conclusions

- Coupled WRF-CLM shows improved precipitation simulations, but still exhibits some biases over higher terrain
- CCSM forcing data increases low level moisture in WRF

Thank You!